Molecular Dynamics Studies of Dog Prion Protein Wild - type and Its D 159 N Mutant
نویسنده
چکیده
Prion diseases (e.g. ‘mad cow’ disease in cattle, chronic wasting disease in deer and elk, Creutzfeldt-Jakob disease in humans) have been a major public health concern affecting humans and almost all animals. However, dogs are strongly resistant to prion diseases. Recently, through transgenic techniques, it was reported that the single (surface) residue D159 is sufficient to confer protection against protein conformational change and pathogenesis, thus provides conformational stability for dog prion protein (Neurobiology of Disease 95 (November 2016) 204-209). This paper studies dog prion protein wild-type and D159N mutant through molecular dynamics (MD) techniques. Our MD results reveal sufficient structural informatics on the residue at position 159 to understand the mechanism underlying the resistance to prion diseases of dogs.
منابع مشابه
Introducing critical residues in the human prion protein and its Asp 178 Asn mutant by molecular dynamics simulation
The molecular dynamics (MD) simulation method is used to assess structural details for humanprion protein (hereafter PrPN) and its Asp178 Asn mutant (hereafter PrPm) which causes fatalfamilial insomnia disease. The results reveal that the flexibility and instability increase in PrPmcould be related to specific amino acids exposed to the solvent. Solvation free energy of PrPm is 20kjmot1nni2 mor...
متن کاملFlexibility of the murine prion protein and its Asp178Asn mutant investigated by molecular dynamics simulations.
Inherited forms of transmissible spongiform encephalopathy, e.g. familial Creutzfeldt-Jakob disease, Gerstmann-Sträussler-Scheinker syndrome and fatal familial insomnia, segregate with specific point mutations of the prion protein. It has been proposed that the pathologically relevant Asp178Asn (D178N) mutation might destabilize the structure of the prion protein because of the loss of the Arg1...
متن کاملA Study on The Effect of Temperature on Human Prion Protein Structure through Molecular Dynamic Simulation
Background & Aims: The normal form of the prion protein is called PrPC and its infectious form is called PrPSc. This protein functions like a crystallized core for the transformation of PrPc into an abnormal PrPSc. The aim of the present study was to investigate the effect of temperature on human prion protein structure through molecular dynamic simulation. Methods: In this research, the GROMAC...
متن کاملEffects of T208E activating mutation on MARK2 protein structure and dynamics: Modeling and simulation
Microtubule Affinity-Regulating Kinase 2 (MARK2) protein has a substantial role in regulation of vital cellular processes like induction of polarity, regulation of cell junctions, cytoskeleton structure and cell differentiation. The abnormal function of this protein has been associated with a number of pathological conditions like Alzheimer disease, autism, several carcinomas and development of...
متن کاملMolecular Dynamics Simulations of Prion Proteins - Effect of Ala→Val mutation-
We investigated the conformational change in the human prion protein owing to an Ala→Val mutation by using molecular dynamics simulations. This mutation is related to Gerstmann-Sträussler-Sheinker disease, one of the familial prion diseases. Five prion protein structures were simulated in the periodic or non-periodic system. The results of molecular dynamics calculations indicated that the glob...
متن کامل